VCU, Department of Computer Science
CMSC 302
11 Advanced Counting Techniques Recurrences
Vojislav Kecman

Ch 7 in $6^{\text {th }}$ edition
Ch 8 in $7^{\text {th }}$ edition
2020-03-19

Recurrence Relations

a.k.a. discrete equations in system theory

- Definition and Examples
- Solving Recurrences
- linear homogeneous recurrence
- linear nonhomogeneous recurrence

2020-03-19

Recurrence Relations

- A recurrence relation (R.R., or just recurrence) for a sequence $\left\{a_{n}\right\}$ is an equation that expresses a_{n} in terms of one or more previous elements a_{0}, \ldots, a_{n-1} of the sequence, for all $n \geq n_{0}$.
- A particular sequence (described non-recursively i.e., given in a closed form) is said to solve the given recurrence relation if it is consistent with the definition of the recurrence.
- A given recurrence relation may have infinite number of solutions.

2020-03-19

Recurrence Relations

-In other words, a recurrence relation is like a recursively defined sequence.

- Without specifying initial values (initial conditions). the same recurrence relation can have (and usually has) infinite number of solutions.
-If both the initial conditions and the recurrence relation are specified, then the sequence is uniquely determined.

Recurrence Relation Example

- Consider the recurrence relation

$$
a_{n}=2 a_{n-1}-a_{n-2}(n \geq 2) .
$$

- Which of the following are solutions?

1. $a_{n}=3 n$
2. $a_{n}=2^{n}$
3. $a_{n}=7$

Recurrence solutions

- $a_{n}=2 a_{n-1}-a_{n-2}$ for $n \geq 2$
- Is $a_{n}=3 n$ a solution?

$$
3 n=? \quad 2 \cdot 3(n-1)-3(n-2)=6 n-6-3 n+6=3 n \text { YES }
$$

- Is $a_{n}=2^{n}$ a solution?

$$
2^{n}=? \quad 2 \cdot 2^{n-1}-2^{n-2}=2 \cdot(1 / 2) \cdot 2^{n}-(1 / 4) 2^{n}=
$$

$$
(3 / 4) \cdot 2^{n} \mathrm{NO}
$$

- Is $\mathrm{a}_{\mathrm{n}}=7$ a solution?

$$
7=? \quad 2 \cdot 7-7=7 \text { YES }
$$

Example: compound interest

- Suppose you deposit P_{0} dollars in a savings account with a fixed interest rate of 5%. How much money do you have after n years? (assume no withdrawals and no taxes)
- $P_{n}=P_{n-1}+5 \%$ of $P_{n-1}=P_{n-1}+0.05 P_{n-1}=1.05$ P_{n-1}
- $P_{n}=1.05\left(1.05 P_{n-2}\right)=1.05\left(1.05\left(1.05 P_{n-3}\right)\right)$ $=\ldots=1.05^{n} P_{0}$

Solving Compound Interest RR

$$
\begin{array}{rlr}
M_{n} & =M_{n-1}+(P / 100) M_{n-1} \\
= & (1+P / 100) M_{n-1} & \\
& =r M_{n-1} & (\text { let } r=1+P / 100) \\
& =r\left(r M_{n-2}\right) & \\
& =r \cdot r \cdot\left(r M_{n-3}\right) \quad \text {...and so on to... } \\
& =r^{n} M_{0} &
\end{array}
$$

More Examples

- Growth of a population in which each organism yields 1 new one every period starting 2 periods after its birth.
$P_{n}=P_{n-1}+P_{n-2} \quad$ (Fibonacci relation)

More Examples Tower of Hanoi Example

- A nineteen century puzzle created by a French mathematician
- There are three pegs and \boldsymbol{n} disks of different
size. The disk are placed in order of size on the first peg, with the largest disk at the bottom.
Disks can be moved one at a time to an empty peg or on top of a larger disk - Goal: Move all disks to peg \# 3 in a minimal number of moves in order of size! mathemaician Disks can be moved one at a time to an empty

Until now we have seen LINEAR RR only! What about these ones?

Nonlinear recurrence relations

$$
\begin{aligned}
& a_{n}=a_{n-1} a_{n-2} \\
& a_{n}=a_{n-1}^{2}+3 a_{n-2} \\
& a_{n}=2 a_{n-1}+3 \sin \left(a_{n-2}\right)
\end{aligned}
$$

2020-03-19

More Examples Tower of Hanoi Example ${ }_{2}$

- Problem: Get all disks from peg 1 to peg 3.
- Only move 1 disk at a time.
- Never set a larger disk on a smaller one.

Tower of Hanoi Example Strategies 1

- First consider the case in which the first peg contains only one disk.
- The disk can be moved directly from peg 1 to peg 3
- Consider the case in which the first peg contains two disks.
- First move the first disk from peg 1 to peg 2.
- Then move the second disk from peg 1 to peg 3.
- Finally, move the first disk from peg 2 to peg 3.

2020-03-19

Tower of Hanoi Example Strategies 2

Consider the case in which the first peg contains three disks and then generalize this to the case of 64 disks (in fact, to an arbitrary number of disks).

- Suppose that peg 1 contains three disks. To move disk number 3 to peg 3, the top two disks must first be moved to peg 2. Disk number 3 can then be moved from peg 1 to peg 3. To move the top two disks from peg 2 to peg 3, use the same strategy as before. This time use peg 1 as the intermediate peg.
- Figure on next slide shows a solution to the Tower of Hanoi problem with three disks.

Solving the ToH puzzle ${ }_{1}$

- We observe that at some point we will need to move the bottom (largest) disk
- In order to do so, all other disks will need to be off the original peg or the peg where the largest disk will go, i.e., on the third peg
- Once this is achieved, we can move the largest disk and we can practically ignore it - then move the remaining disks

Solving the ToH puzzle ${ }_{2}$

- Let $H_{n}=\#$ moves for a stack of n disks.
- Optimal strategy:
- Move top $n-1$ disks to spare peg. $\left(H_{n-1}\right.$ moves)
- Move bottom disk. (1 move)
- Move top $n-1$ to bottom disk. (H_{n-1} moves)
- Note: $H_{n}=2 H_{n-1}+1$

ToH - Number of moves

- For our proposed solution
$-H_{n}=2 H_{n-1}+1, H_{1}=1$
- Is this the only solution?
- NO. For example, we can make extra moves of the top disks in any peg and back
- Is there another solution with fewer moves?
- NO because of the reasoning when we first presented the solution

Solving the ToH puzzle ${ }_{3}$

$$
\begin{aligned}
H_{n} & =2 H_{n-1}+1 \\
& =2\left(2 H_{n-2}+1\right)+1 \quad=2^{2} H_{n-2}+2+1 \\
& =2^{2}\left(2 H_{n-3}+1\right)+2+1=2^{3} H_{n-3}+2^{2}+2+1 \\
& \cdots \\
& =2^{n-1} H_{1}+2^{n-2}+\ldots+2+1 \\
& =2^{n-1}+2^{n-2}+\ldots+2+1 \quad\left(\text { since } H_{1}=1\right) \\
& =\sum_{i=0}^{n-1} 2^{i}=2^{n}-1 \quad \text { This is a closed form expression }
\end{aligned}
$$

Note, this is the equation for an optimal number of moves!!!
2020-03-19

Complexity of the ToH puzzle

- Associated folklore stated that monks were actually working this puzzle in a tower in Hanoi using 64 gold disks, and the world would end when they solved it
- How much time would that take?
- $\mathrm{H}_{64}=2^{64}-1 \approx 16 \cdot 2^{60}=16 \cdot\left(2^{10}\right)^{6} \approx$ $16 \cdot\left(10^{3}\right)^{6}=16 \cdot 10^{18}$ moves
- If a move takes a second, about 500 billion years !!!???!!!

2020-03-19

Towers of Hanoi

- Interactive version where you can move the disks around
- https://romek.info/games/hanoi4e.html
- http://zylla.wipos.p.lodz.pl/games/hanoi4e.html

If you want to have all disks moved to the Peg \# 3 remember the simple rule

- if the number of disks is EVEN the first disk goes to peg \# 2,
- if the number of disks is ODD the first disk goes to peg \# 3 .

Basics of the polynomials

Every n-order polynomial with real coefficients a_{i} $a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{2} x^{2}+a_{1} x+a_{0}=0$ can be expressed as the product of n monomials $\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n-1}\right)\left(x-x_{n}\right)=0$ where x_{i} are the roots of the polynomial. If there is a complex root x_{i} there will always be its conjugate x_{j}, meaning complex roots appear only in pairs.

Review Questions

- Find the terms a_{3} and a_{4} of the sequence $\left\{a_{n}\right\}$ where $a_{n}=a_{n-1}^{2}+2 a_{n-2}, a_{0}=1, a_{1}=1$.
- Which of the following sequences are solutions of the recurrence relation $a_{n}=3 a_{n-1}+4 a_{n-2}$?
(a) $a_{n}=0$;
(b) $a_{n}=2$;
(c) $a_{n}=4^{n}$.
- A colony of bacteria triples in size every hour. Find a recurrence relation for its size and the solution of this recurrence relation.

Basics of the roots of polynomials

Every n-order polynomial $a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{2} x^{2}+a_{1} x+a_{0}=0$ has n roots, which can be real or imaginary, distinct or repeated

 polynomials

$$
\begin{array}{llc}
1{ }^{\text {st }} \text { order polynomial: } & a x+b=0 & x=-\frac{b}{a} \\
2^{\text {nd }} \text { order polynomial: } & a x^{2}+b x+c=0 & x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{array}
$$

$3^{\text {rd }}$ order polynomial: $a x^{3}+b x^{2}+c x+d=0$ expressions!
$2^{\text {nd }}$ order polynomial to solve for the last two roots.

Solving Recurrences

- A linear homogeneous recurrence of degree \underline{k} with constant coefficients (" k-LiHoReCoCo") is a recurrence of the form
$a_{n}=c_{1} a_{n-1}+\ldots+c_{k} a_{n-k}$,
where the c_{i} are all real, and $c_{k} \neq 0$.
- The solution is uniquely determined if \boldsymbol{k} initial conditions $a_{0} \ldots a_{k-1}$ are provided.

NOTE VERY CAREFULLY: All what comes is valid for LINEAR, HOMOGENEOUS, recurrences, with CONSTANT coefficients!!!
2020-03-19

For example, a theory of LiHoReCoCo that follows, is not valid for the equations below! It's of no use whatsoever!!!

WHY?
$a_{n}=c_{1} a_{n} a_{n-1}+c_{2} a_{n-2}, \quad \quad$ Nonlinearity
$a_{n}=n a_{n-1}+\ldots+c_{k} a_{n-k}, \quad$ Not constant coefficients
$a_{n}=c_{1} a_{n-1}+\ldots+c_{k} a_{n-k}+3 \quad$ Not homogenous
$a_{n}=c_{1} a^{2}{ }_{n-1}+\ldots+c_{k} a_{n-k}, \quad$ Nonlinearity
$a_{n}=c_{1} a_{n-1}+\ldots+(n-k) a_{n-k}, \quad$ Not constant coefficients
$a_{n}=c_{1} a_{n-1}+\sin \left(a_{n-k}\right) \quad$ Nonlinearity

Solving LiHoReCoCos

- Basic idea: Look for solutions of the form $a_{n}=r^{n}$, where r is a constant.
- Plug r^{n} into LiHoReCoCos and you get the characteristic equation:

$$
m^{m}=c_{1} m^{m-1}+\ldots+c_{k^{m-k}} \text {, if we } I^{*} r^{-n} r^{k}
$$

- we get

$$
r^{k}-c_{1} 1^{k-1}-\ldots-c_{k}=0
$$

- The solutions (characteristic roots) can yield an explicit formula for the sequence.

2020-03-19

Solving 2-LiHoReCoCos

- Consider an arbitrary 2-LiHoReCoCo:

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}
$$

- It has the characteristic equation (C.E.):

$$
r^{2}-c_{1} r-c_{2}=0
$$

- Theorem 1: If this CE has 2 different roots $r_{1} \neq r_{2}$, then
$a_{n}=A r_{1}^{n}+B r_{2}{ }^{n}$ for $n \geq 0$
for some constants A, B.
- Note that A and B are uniquely defined by INITIAL CONDITIONS ONLY

Solving 1-LiHoReCoCos

Consider the 1-LiHoReCoCo: $a_{n}=2 a_{n-1}, a_{0}=2$
Start with $\mathrm{a}_{n}=\mathbf{C} r^{n}$ and plug it in here and
we get $r^{n}-2 r^{n-1}=r^{n}-2 r^{n} / r=0$
$/ r^{m}$
$r-2=0$ and $r=2$
$a_{n}=\mathrm{C} 2^{n}$ now, to get C we use initial conditions,
and write
$a_{0}=2=\mathbf{C} 2^{0} \rightarrow \mathbf{C}=2$, and the solution is
$a_{n}=2^{*} 2^{n}=2^{n+1}$. Check it by plugging it back here

Example

- Solve the recurrence $a_{n}=a_{n-1}+2 a_{n-2}$ given the initial conditions $a_{0}=2, a_{1}=7$.
- Solution: First rewrite recurrence as
- $a_{n}-a_{n-1}-2 a_{n-2}=0$ i.e., as $m^{n}-m^{m-1}-2 r^{m-2}=0$
- Which leads to the characteristic equation:

$$
r^{2}-r-2=0
$$

- Solutions: $r=\left[-(-1) \pm\left((-1)^{2}-4 \cdot 1 \cdot(-2)\right)^{1 / 2}\right] / 2 \cdot 1$

$$
=\left(1 \pm 9^{1 / 2}\right) / 2=(1 \pm 3) / 2, \text { so } r_{1}=2 \text { and } r_{2}=-1 .
$$

- So $a_{n}=A 2^{n}+B(-1)^{n}$.

What about A and B ? Now initial conditions should jump in!!!

Example Continued...

- To find A and B, solve the equations for the initial conditions a_{0} and a_{1} :

$$
\begin{aligned}
& a_{0}=2=A 2^{0}+B(-1)^{0} \\
& a_{1}=7=A 2^{1}+B(-1)^{1}
\end{aligned}
$$

- Simplifying, we have the pair of equations:

$$
\begin{aligned}
& 2=A+B \\
& 7=2 A-B
\end{aligned}
$$

which we can solve easily by addition:

$$
9=3 A ; \quad A=3 ; \quad B=-1
$$

- Final answer: $a_{n}=3 \cdot 2^{n}-(-1)^{n}$

Solving Fibonacci

1) Again, assume exponential solution of the form $a_{n}=r^{n}$:
Plug this into $a_{n}=a_{n-1}+a_{n-2}$:

$$
r^{n}=r^{n-1}+r^{n-2}
$$

Notice that all three terms have a common r^{n-2} factor, so divide this out:

$$
r^{n} / r^{n-2}=\left(r^{n-1}+r^{n-2}\right) / r^{n-2} \Rightarrow r^{2}-r-1=0
$$

This equation is the characteristic equation of the Fibonacci recurrence relation.

Example - Solving Fibonacci

Remind, recipe solution has 3 basic steps:

1) Assume solution of the form $a_{n}=r^{n}$
2) Find all possible r 's that seem to make this work. Call these r_{1} and r_{2}. Modify assumed solution to general solution $a_{n}=A r_{1}^{n}+B r_{2}{ }^{n}$ where A, B are constants.
3) Use initial conditions to find A, B and obtain specific solution.

Solving Fibonacci

2) Find all possible r 's that solve characteristic

$$
r^{2}=r+1
$$

Call these r_{1} and r_{2}. General solution is $a_{n}=A r_{1}{ }^{n}+B r_{2}{ }^{n}$ where A, B are constants.
Quadratic formula gives:

$$
r=(1 \pm \sqrt{ } 5) / 2
$$

So $r_{1}=(1+\sqrt{ } 5) / 2, r_{2}=(1-\sqrt{ } 5) / 2$
General solution:

$$
a_{n}=A[(1+\sqrt{ } 5) / 2]^{n}+B[(1-\sqrt{ } 5) / 2]^{n}
$$

2020-03-19

Solving Fibonacci

3) Use initial conditions $a_{0}=0, a_{1}=1$ to find A, B and obtain specific solution.
```
0= a = = A[(1+\sqrt{}{5})/2\mp@subsup{]}{}{0}+B[(1-\sqrt{}{5})/2\mp@subsup{]}{}{0}=A+B
1=a,}=A[(1+\sqrt{}{}5)/2\mp@subsup{]}{}{1}+B[(1-\sqrt{}{5})/2\mp@subsup{]}{}{1}
    A(1+\sqrt{}{5})/2+B(1-\sqrt{}{5})/2
```

 \((A+B) / 2+(A-B) \sqrt{5} / 2\)
 First equation give $B=-A$. Plug into $2^{\text {nd }}$:
$1=0+2 A \sqrt{ } 5 / 2$ so $A=1 / \sqrt{ } 5, B=-1 / \sqrt{ } 5$
Final answer:

$$
a_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

2020-03-19

k-LiHoReCoCos

- Consider a k-LiHoReCoCo: $a_{n}=\sum_{i=1}^{k} c_{i} a_{n-i}$
- It's C.E. is: $r^{k}-\sum_{i=1}^{k} c_{i} r^{k-i}=0$
- Theorem 3: If C.E. has k distinct roots r_{i}, then the solutions to the recurrence are of the form:

$$
a_{n}=\sum_{i=1}^{k} A_{i} r_{i}^{n}
$$

for all $n \geq 0$, where the A_{i} are constants to be determined from the initial conditions.

Solving Fibonacci

3) Use initial conditions $a_{1}=1, a_{2}=1$ to find A, B and obtain specific solution.

$$
\begin{gathered}
1=a_{1}=A[(1+\sqrt{ } 5) / 2]^{1}+B[(1-\sqrt{ } 5) / 2]^{1}=A a_{1}+B a_{2} \\
1=a_{2}=A[(1+\sqrt{ } 5) / 2]^{2}+B[(1-\sqrt{ } 5) / 2]^{2}=A a_{1}{ }^{2}+B a_{2}{ }^{2}= \\
A(1+\sqrt{5}) / 2+B(1-\sqrt{ } 5) / 2 \\
(A+B) / 2+(A-B) \sqrt{5} / 2
\end{gathered}
$$

First equation give $B=-A$. Plug into $2^{\text {nd }}$:
$1=0+2 A \sqrt{ } 5 / 2$ so $A=1 / \sqrt{ } 5, B=-1 / \sqrt{ } 5$
Final answer:

$$
a_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

2020-03-19
(CHECK IT!) 38/64

k-LiHoReCoCos

- Example: Consider a 4-LiHoReCoCo:

$$
\begin{aligned}
& a_{n}=-10 a_{n-1}-35 a_{n-2}-50 a_{n-3}-24 a_{n-4} \\
& a_{n}+10 a_{n-1}+35 a_{n-2}+50 a_{n-3}+24 a_{n-4}=0
\end{aligned}
$$

- It's C.E. is: $r^{4}+10 r^{3}+35 r^{2}+50 r+24=0$
- The roots of C.E. are $r_{1}=-1, r_{2}=-2, r_{3}=-3$, and $r_{4}=-4$, and the homogeneous solution is
$a_{n}=\sum_{i=1}^{4} A_{i} r_{i}^{n}=A_{1}(-1)^{n}+A_{2}(-2)^{n}+A_{3}(-3)^{n}+A_{4}(-4)^{n}$
for all $n \geq 0$, where the A_{i} are constants depending upon initial conditions.

2020-03-19

Check the solutions below

Example $6(k=3)$

Find the solution of $a_{n}=6 a_{n-1}-11 a_{n-2}+6 a_{n-3}$ with initial conditions $a_{0}=2, a_{1}=5$ and $a_{2}=15$.

Sol :

The roots of $r^{3}-6 r^{2}+11 r-6=0$ are

$$
r_{1}=1, r_{2}=2, \text { and } r_{3}=3
$$

$\therefore a_{n}=A_{1} \cdot 1^{n}+A_{2} \cdot 2^{n}+A_{3} \cdot 3^{n}$
$\because a_{0}=A_{1}+A_{2}+A_{3}=2 \quad A_{1}=1$,
$a_{1}=A_{1}+2 A_{2}+3 \mathrm{~A}_{3}=5 \quad \Rightarrow \quad A_{2}=-1$, $a_{2}=A_{1}+4 A_{2}+9 A_{3}=15 \quad A_{3}=2$
$\therefore a_{n}=1-2^{n}+2 \cdot 3^{n}$

Complication: Repeating Roots

Let $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}$ be a recurrence relation with $c_{1}, c_{2}, \ldots, c_{k} \in \mathbf{R}$.
Then, the SOLUTION goes as follows

$$
\begin{aligned}
& \text { If } r^{k}-c_{1} r^{k^{k-1}}-c_{2} r^{k-2}-\ldots-c^{k}=0 \text { has } \\
& t \text { distinct roots } \quad r_{1}, r_{2}, \ldots, \boldsymbol{r}_{\boldsymbol{t}}
\end{aligned}
$$

with multiplicities $m_{1}, m_{2}, \ldots, m_{t}$ respectively,
where $\boldsymbol{m}_{\boldsymbol{i}} \geq 1, \forall i$, and $\boldsymbol{m}_{1}+\boldsymbol{m}_{2}+\ldots+\boldsymbol{m}_{\boldsymbol{t}}=\boldsymbol{k}$,
then $a_{n}=\left(A_{1,0}+A_{1,1} \cdot n+\ldots+A_{1, m_{1}-1} \cdot n^{m_{1}-1}\right) r_{1}^{n}$
$+\quad\left(A_{2,0}+A_{2,1} \cdot n+\ldots+A_{2, m_{2}-1} \cdot n^{m_{2}-1}\right) \cdot r_{2}{ }^{n}$

$$
+\ldots+\left(A_{t, 0}+A_{t, 1} \cdot n+\ldots+A_{t, m_{i}-1} \cdot n^{m_{t}-1}\right) \cdot r_{t}^{n}
$$

where $A_{i, j}$ are constants for $1 \leq i \leq t$ and $0 \leq j \leq m_{i}-1$ and they are to be found by using the k initial conditions.43/64

Homogeneous - Complications

1) Repeating (Degenerate) roots in characteristic equation. Repeating roots imply that they don't learn anything new from second root, so may not have enough information to solve formula with given initial conditions. We'll see how to deal with this on next slide.
2) Non-real (complex) numbers roots in
characteristic equation. If the sequence has periodic behavior, it may get complex roots (for example $a_{n}=$ $-a_{n-2}$). We won't worry about this case as long as the complex roots don't repeat (in principle, same method works as before, except use complex arithmetic).
[^0]
Complication: Repeating Roots

EG: Solve $a_{n}=2 a_{n-1}-a_{n-2}, a_{0}=1, a_{1}=2$
Find characteristic equation by plugging in $a_{n}=r^{n}$:

$$
r^{2}-2 r+1=0
$$

Since $r^{2}-2 r+1=(r-1)^{2}$ the root $r=1$ repeats.
If we tried to solve by using general solution

$$
a_{n}=A r_{1}^{n}+B r_{2}^{n}=A 1^{n}+B 1^{n}=(A+B) 1^{n}
$$

which forces a_{n} to be a constant function $(\rightarrow \leftarrow)$.
SOLUTION: Multiply second solution by n so general solution looks like:

$$
a_{n}=A r_{1}{ }^{n}+B n r_{1}{ }^{n}
$$

2020-03-19

Complication: Repeating Roots

Solve $a_{n}=2 a_{n-1}-a_{n-2}, a_{0}=1, a_{1}=2$
General solution: $a_{n}=A 1^{n}+B n 1^{n}=A+B n$
Plug into initial conditions
$1=a_{0}=A+B \cdot 0 \cdot 1^{0}=A$
$2=a_{1}=A \cdot 1^{1}+B \cdot 1 \cdot 1^{1}=A+B$
Plugging first equation $A=1$ into second:
$2=1+B$ implies $B=1$.
Final answer: $a_{n}=1+n$

And again, one more example with repeated roots :
Example Find the solution to the recurrence relation
$a_{n}=-3 a_{n-1}-3 a_{n-2}-a_{n-3}$ with initial conditions
$a_{0}=1, a_{1}=-2$ and $a_{2}=-1$.
Sol :
$r^{3}+3 r^{2}+3 r+1=0$ has a single root $r_{0}=-1$ of multiplicity three.
$\therefore a_{n}=\left(A_{1}+A_{2} n+A_{3} n^{2}\right) r_{0}{ }^{n}=\left(A_{1}+A_{2} n+A_{3} n^{2}\right)(-1)^{n}$
$\because a_{0}=\alpha_{1}=1$

$$
a_{1}=\left(A_{1}+A_{2}+A_{3}\right) \cdot(-1)=-2
$$

$$
a_{2}=A_{1}+2 A_{2}+4 A_{3}=-1
$$

$\therefore A_{1}=1, A_{2}=3, A_{3}=-2$

$$
\Rightarrow \quad a_{n}=\left(1+3 n-2 n^{2}\right) \cdot(-1)^{n}
$$

One more example with repeated roots :

What's the solution of $a_{n}=6 a_{n-1}-9 a_{n-2}$ with $a_{0}=1$ and $a_{1}=6$?

Solution :

The root of $r^{2}-6 r+9=0$ is $r_{0}=3$.
Hence $a_{n}=\alpha_{1} \cdot 3^{n}+\alpha_{2} \cdot n \cdot 3^{n}$.
$a_{0}=1=\alpha_{1} \cdot 3^{0}+\alpha_{2} \cdot 0 \cdot 3^{0} \quad \Rightarrow \quad \alpha_{1}=1$
$a_{1}=3 \alpha_{1}+3 \alpha_{2}=6 \quad \Rightarrow \quad \alpha_{2}=1$
$\Rightarrow a_{n}=3^{n}+n \cdot 3^{n}$

LiNoHoReCoCos

- Linear nonhomogeneous RRs with constant coefficients may (unlike LiHoReCoCos) contain some terms $F(n)$ that depend only on n (and not on any $a_{i}^{\prime} s$) or $F(n)$ is just a constant.
- General form:

$$
\begin{aligned}
& a_{n}=c_{1} a_{n-1}+\ldots+c_{k} a_{n-k}+F(n) \\
& a_{n}-c_{1} a_{n-1}-\ldots-c_{k} a_{n-k}=F(n)
\end{aligned}
$$

2020-03-19

Solutions of LiNoHoReCoCos

- A useful theorem about $\mathrm{LiNoHoReCoCos:}$
- If $p(n)$ is any particular solution to the LiNoHoReCoCo
- Then all its solutions are of the form:

$$
a_{n}=p(n)+h(n),
$$

where $h(n)$ is any solution to the associated homogeneous RR
2020-03-19

Why is it this way?

- Consider that homogeneous part is given and fixed and only changing part is $F(n)$,
- $a_{n}=2 a_{n-1}-a_{n-2}+3 \Longrightarrow a_{n}-2 a_{n-1}+a_{n-2}=3$
- $a_{n}=2 a_{n-1}-a_{n-2}+3^{n} \Longrightarrow a_{n}-2 a_{n-1}+a_{n-2}=3^{n}$
- $a_{n}=2 a_{n-1}-a_{n-2}+3 n \Longrightarrow a_{n}-2 a_{n-1}+a_{n-2}=3 n$
- $a_{n}=2 a_{n-1}-a_{n-2}+n^{2} \Longrightarrow a_{n}-2 a_{n-1}+a_{n-2}=n^{2}$
- $a_{n}=2 a_{n-1}-a_{n-2}+\sin (\mathrm{n}) \Longrightarrow a_{n}-2 a_{n-1}+a_{n-2}=\sin (\mathrm{n})$
- Hence, recurrence relations is described with same homogeneous equation and only changing term is right hand side, i.e., the homogeneous solution will be same and each time we will have a particular solution corresponding to a particular $F(n)$

Solution to the Nonhomogeneous Case

$$
a_{n}-2 a_{n-1}=1
$$

1) Solve with the RHS set to 0 , i.e. solve first

$$
a_{n}-2 a_{n-1}=0
$$

Characteristic equation: $r-2=0$
so unique root is $r=2$. General solution to homogeneous equation is

$$
a_{n H}=A \cdot 2^{n}
$$

solution, i.e., use rule:
Nonhomogeneous Solution

Solution to the Nonhomogeneous Case

2) Add a particular solution to get general solution for $a_{n}-2 a_{n-1}=1$. Use rule:

General
Nonhomogeneous
:---:
homogeneous
:---:
Nonhomogeneous

There are little tricks for guessing particular nonhomogeneous solutions. For example, when the RHS is constant, the guess should also be a constant.
So guess a particular solution of the form $b_{n}=C$.
Plug into the original recursion:
$1=b_{n}-2 b_{n-1}=C-2 C=-C$. Therefore $C=-1$.
General solution: $a_{n}=A \cdot 2^{n}-1$.

Example

- Find all solutions to $a_{n}=3 a_{n-1}+2 n$. Which solution has $a_{1}=3$?
- Notice this is a $1-\mathrm{LiNoHoReCoCo}$. Its associated $1-\mathrm{LiHoReCoCo}$ is $a_{n}=3 a_{n-1}$, whose solutions are all of the form $a_{n}=A 3^{n}$.
- Thus the solutions to the original problem are all of the form $a_{n}=p(n)+A 3^{n}$.
- So, all we need to do is find one $p(n)$ that works.

Solution to the Nonhomogeneous Case

Finally, use initial conditions (I.Cs.) to get closed solution. In the case of the Towers of Hanoi recursion, initial condition is:

$$
a_{1}=1
$$

Using general solution $a_{n}=A \cdot 2^{n}-1$ we get:
$1=a_{1}=A \cdot 2^{1}-1=2 A-1$.
Therefore, $2=2 A$, so $A=1$, and
the final answer is

$$
a_{n}=2^{n}-1
$$

2020-03-19

Trial Solutions

- If the extra terms $F(n)$ are a degree- t polynomial in n, you should try a degree- t polynomial as the particular solution $p(n)$.
- This case: $F(n)$ is linear so try $a_{n}=c n+d$.
- $c n+d=3(c(n-1)+d)+2 n \quad$ (for all n)
$(-2 c-2) n+(3 c-2 d)=2 n+0$ (collect terms)
and, $c=-1, \quad d=-3 / 2$.
- So, $a_{n}=-n-3 / 2$ is a particular solution.
- Check: $a_{n \geq 1}=\{-5 / 2,-7 / 2,-9 / 2, \ldots\}$

Finding a Desired Solution

- From the previous, we know that all general solutions to our example are of the form $\mathrm{a}_{\mathrm{n}}=\mathrm{a}_{\mathrm{nH}}+\mathrm{a}_{\mathrm{np}}$:
$a_{n}=A 3^{n}-n-3 / 2$
Solve this for A for the given I.C., $a_{1}=3$:
$3=-1-3 / 2+A 3^{1}$
$A=11 / 6$
The answer is $a_{n}=(11 / 6) 3^{n}-n-3 / 2$

PARTICULAR SOLUTIONS - 3 more examples, first 2 are from*

The general rule that we follow is:

For any amount of terms with the form $\mathbf{k}^{\mathbf{n}}$, we shall let $\mathbf{a}_{\mathbf{n}}$ be $\mathbf{k}^{\mathbf{n}}$ multiplied by a constant. So, if the non-homogeneous part is $a_{n}=5^{n}+78^{n}$, then we let the answer be $\mathbf{a}_{n}=c_{1} 5^{n}+c_{2} 78^{n}$, in which c_{1} and c_{2} are constants to be found. The same goes to the form $\mathbf{n k}^{\mathbf{n}}$, in which you let $\mathbf{a}_{\mathbf{n}}=\mathbf{c}_{\mathbf{1}} \mathbf{n k} \mathbf{k}^{\mathbf{n}}$. However, there is an exception, when the root r is of the same form as k^{n}. We, will not go into these specifics. It's for a more specialized course!

Example A (terms of the form k^{n})

$$
a_{n}=3 a_{n-1}+2^{n} \text {, I.C. is } a_{0}=2 \text {, }
$$

We first proceed to solve the associated homogeneous recurrence relation,

$$
a_{n}-3 a_{n-1}=0
$$

The characteristic equation gives us $\mathbf{r}=3$, and therefore $\mathrm{a}_{\mathrm{nH}}=\mathrm{c}_{1}\left(3^{\mathrm{n}}\right)$
Now, after the homogeneous part is solved,
we proceed to solve the non-homogeneous part.
Using a smart guess, we let

$$
a_{n P}=c_{2} 2^{n}
$$

From here, we then deduce that $\mathrm{a}_{\mathrm{n}-1 \mathrm{P}}=\mathrm{c}_{2} \mathbf{2}^{\mathrm{n}-1}$.
2020-03-19 *http://furthermathematicst.blogspot.com/2011/06/43-non-homogeneous-linear-recurrence.html

Example C: Repeating Roots + F(n)	
Solve $a_{n}=2 a_{n-1}-a_{n-2}+2^{n}$, I.Cs. $a_{1}=1, a_{2}=2$	
Homogeneous solution (see p. 36):	
$a_{n H}=A 1^{n+B n 1^{n}}=A+B n$	
However, having $\mathrm{F}(\mathrm{n})$ we first need to find particular solution and only then to use I.Cs. to find constants.	
Assume $\mathrm{a}_{\mathrm{nP}}=\mathrm{C} 2^{n}$, and if so, $\mathrm{a}_{\mathrm{n}-1 \mathrm{P}}=\mathrm{C} 2^{(n-1)}$ \& $\mathrm{a}_{\mathrm{n}-2 \mathrm{P}}=\mathrm{C} 2^{(n-2)}$. Plug them into original recurrence equation above	
$\mathrm{C} 2 \mathrm{n}-2 \mathrm{C} 2^{(\mathrm{n}-1)}+\mathrm{C} 2^{(n-2)}=1^{*} 2^{\text {n }}$	
$(\mathrm{C}-2 \mathrm{C} / 2+\mathrm{C} / 4)^{*} 2^{\mathrm{n}}=1^{*} 2^{\mathrm{n}}$ and $\mathrm{C}=4$.	
$a_{n}=A+B n+4^{*} 2^{n}$. Now only one uses I.Cs. to find A and B	
$1=A+B+4 * 2$ and $2=A+2 B+4 * 4$,	
$\mathrm{A}=0, \mathrm{~B}=-7$	
$a_{n}=-7 n+4^{*} 2^{n} \quad \Rightarrow \quad a_{n}=-7 n+2^{n+2} \longleftarrow$	
Checking: $-7 \mathrm{n}+2^{\mathrm{n}+2}-2\left(-7 \mathrm{n}-7+2^{\mathrm{n}+1}\right)-7 \mathrm{n}-14+2^{n}=2^{n}$	
$-7 n+2^{n+2}+14 n+14-2^{n+2}-7 n-14+2^{n}=2^{n}$	
20-03-19 $\quad \mathbf{2}^{\mathbf{n}}=\mathbf{2}^{\mathbf{n}} \quad$ Solution is correct	61

Review

- Recurrence relation
- Solving recurrences
- k-LiHoReCoCos
- LiNoHoReCoCos

[^0]: 2020-03-19 with complex numbers consider a complicated math.

