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Recurrence Relations
a.k.a. discrete equations in system theory

• Definition and Examples
• Solving Recurrences 

– linear homogeneous recurrence
– linear nonhomogeneous recurrence

2020-03-19
3/64

Recurrence Relations
• A recurrence relation (R.R., or just recurrence) for 

a sequence {an} is an equation that expresses an in 
terms of one or more previous elements a0, …, 
an−1 of the sequence, for all n  n0.

• A particular sequence (described non-recursively
i.e., given in a  closed form) is said to solve the 
given recurrence relation if it is consistent with the 
definition of the recurrence.

– A given recurrence relation may have infinite number
of solutions.
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Recurrence Relations

•In other words, a recurrence relation is like a recursively
defined sequence. 

• Without specifying initial values (initial conditions).
the same recurrence relation can have (and usually has) 
infinite number of solutions.

•If both the initial conditions and the recurrence relation
are specified, then the sequence is uniquely
determined.
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Recurrence Relation Example
• Consider the recurrence relation

an = 2an−1 − an−2 (n  2).

• Which of the following are solutions?
1. an = 3n
2. an = 2n

3. an = 7
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Recurrence solutions
• an = 2an-1 – an-2 for n≥2
• Is an = 3n a solution?

3n =?     2ꞏ3(n-1) – 3(n-2) = 6n-6-3n+6 = 3n YES

• Is an = 2n a solution?
2n =?    2ꞏ2n-1 – 2n-2 = 2ꞏ(1/2)ꞏ2n – (1/4)2n =          

(3/4)ꞏ2n NO

• Is an = 7 a solution?
7 =?     2ꞏ7 – 7 = 7   YES
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Example: compound interest
• Suppose you deposit P0 dollars in a savings 

account with a fixed interest rate of 5%. How 
much money do you have after n years? 
(assume no withdrawals and no taxes)

• Pn = Pn-1 + 5% of Pn-1 = Pn-1 + 0.05 Pn-1 = 1.05 
Pn-1

• Pn = 1.05 (1.05 Pn-2) = 1.05 (1.05 (1.05 Pn-3)) 
= ... = 1.05n P0
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Solving Compound Interest RR

Mn = Mn−1 + (P/100)Mn−1

= (1 + P/100) Mn−1

= r Mn−1 (let r = 1 + P/100)
= r (r Mn−2)
= rꞏrꞏ(r Mn−3) …and so on to…
= rn M0
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More Examples

• Growth of a population in which each 
organism yields 1 new one every period 
starting 2 periods after its birth.
Pn = Pn−1 + Pn−2 (Fibonacci relation)
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Until now we have seen LINEAR 
RR only! What about these ones?

Nonlinear recurrence relations
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• A nineteen century puzzle created by a French 
mathematician 

• There are three pegs and n disks of different 
size. The disk are placed in order of size on the 
first peg, with the largest disk at the bottom. 
Disks can be moved one at a time to an empty 
peg or on top of a larger disk

• Goal: Move all disks to peg # 3 in a minimal 
number of moves in order of size!

More Examples
Tower of Hanoi Example 1
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More Examples
Tower of Hanoi Example 2

• Problem: Get all disks from peg 1 to peg 3.
– Only move 1 disk at a time.
– Never set a larger disk on a smaller one.

Peg #1 Peg #2 Peg #3



2020-03-19
13/64

• First consider the case in which the first peg 
contains only one disk. 
– The disk can be moved directly from peg 1 to peg 3 

• Consider the case in which the first peg 
contains two disks. 
– First move the first disk from peg 1 to peg 2.
– Then move the second disk from peg 1 to peg 3. 
– Finally, move the first disk from peg 2 to peg 3. 

Tower of Hanoi Example  -
Strategies 1
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• Consider the case in which the first peg contains 
three disks and then generalize this to the case of 
64 disks (in fact, to an arbitrary number of disks).

– Suppose that peg 1 contains three disks. To move disk 
number 3 to peg 3, the top two disks must first be moved 
to peg 2. Disk number 3 can then be moved from peg 1 to 
peg 3. To move the top two disks from peg 2 to peg 3, use 
the same strategy as before. This time use peg 1 as the 
intermediate peg. 

– Figure on next slide shows a solution to the Tower of 
Hanoi problem with three disks.

Tower of Hanoi Example  -
Strategies 2
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Solving the ToH puzzle 1

• We observe that at some point we will 
need to move the bottom (largest) disk

• In order to do so, all other disks will need 
to be off the original peg or the peg where 
the largest disk will go, i.e., on the third 
peg

• Once this is achieved, we can move the 
largest disk and we can practically ignore 
it – then move the remaining disks
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• Let Hn = # moves for a stack of n disks.
• Optimal strategy:

– Move top n−1 disks to spare peg. (Hn−1
moves)

– Move bottom disk. (1 move)
– Move top n−1 to bottom disk. (Hn−1 moves)

• Note:      Hn = 2Hn−1 + 1

Solving the ToH puzzle 2
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Hn = 2 Hn−1 + 1
= 2 (2 Hn−2 + 1) + 1 = 22 Hn−2 + 2 + 1
= 22(2 Hn−3 + 1) + 2 + 1 = 23 Hn−3 + 22 + 2 + 1
…
= 2n−1 H1 + 2n−2 + … + 2 + 1
= 2n−1 + 2n−2 + … + 2 + 1 (since H1 = 1)

= 2n − 1
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Solving the ToH puzzle 3

Note, this is the equation for an optimal number of moves!!!

This is a closed form expression
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ToH - Number of moves

• For our proposed solution
– Hn = 2Hn-1 + 1,  H1 = 1

• Is this the only solution?
– NO. For example, we can make extra moves 

of the top disks in any peg and back
• Is there another solution with fewer 

moves?
– NO because of the reasoning when we first 

presented the solution
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Complexity of the ToH puzzle

• Associated folklore stated that monks were 
actually working this puzzle in a tower in 
Hanoi using 64 gold disks, and the world 
would end when they solved it

• How much time would that take?
• H64 = 264-1 ≈ 16ꞏ260 = 16ꞏ(210)6 ≈

16ꞏ(103)6=16ꞏ1018 moves
• If a move takes a second, about 500 billion 

years !!!???!!!
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Towers of Hanoi
• Interactive version where you can move the disks 

around
- https://romek.info/games/hanoi4e.html
– http://zylla.wipos.p.lodz.pl/games/hanoi4e.html

If you want to have all disks moved to the Peg # 3 remember the simple rule

• if the number of disks is EVEN the first disk goes to peg # 2, 

• if the number of disks is  ODD  the first disk goes to peg # 3.
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Review Questions
• Find the terms a3 and a4 of the sequence {an} 

where an = an-1
2 + 2an-2, a0=1, a1=1.

• Which of the following sequences are solutions 
of the recurrence relation an = 3an-1 + 4an-2?    
(a) an=0;      (b) an=2;           (c) an=4n.

• A colony of bacteria triples in size every hour. 
Find a recurrence relation for its size and the 
solution of this recurrence relation.
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Basics of the polynomials
Every n-order polynomial with real coefficients ai

anxn + an-1xn-1 + … + a2x2 + a1x + a0 = 0

can be expressed as the product of n monomials

(x - x1)(x – x2) . . . (x – xn-1)(x – xn) = 0

where xi are the roots of the polynomial.

If there is a complex root xi there will always be 
its conjugate xj, meaning complex roots appear 
only in pairs. 

2020-03-19
24/64

Basics of the roots of polynomials
Every n-order polynomial anxn + an-1xn-1 + … + a2x2 + a1x + a0 = 0 has n roots, which 
can be real or imaginary, distinct or repeated

Re x

j Im x

Re x

j Im x

Re x

j Im x

Re x

j Im x

3 roots = -3

2 roots = 1 2 pairs of 
roots with 
Re x = -3 2 distinct real 

roots x1 = 1 and 
x2 = 3

roots([1 7 10 -18 -27 27])
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Basics of finding the roots of 
polynomials

2nd order polynomial:    ax2  bx  c 
2

1,2
4

2
b b acx a

  

3rd order polynomial:   ax3  bx2  cx + d 

1st order polynomial:        ax  b 
bx a 

There are ways – Cardano’s method, Vieta’s substitution etc, but too complicated 
expressions!

If in need find by trying (if possible) one solution, then use long division to get a 
2nd order polynomial to solve for the last two roots.
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Solving Recurrences
• A linear homogeneous recurrence of degree k

with constant coefficients (“k-LiHoReCoCo”) is 
a recurrence of the form

an = c1an−1 + … + ckan−k,

where the ci are all real, and ck 0.

• The solution is uniquely determined if k
initial conditions a0…ak−1 are provided.

NOTE VERY CAREFULLY: All what comes is valid for LINEAR, 
HOMOGENEOUS, recurrences, with CONSTANT coefficients!!!
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What is the order k of LiHoReCoCo?

• k is  a difference between the biggest and 
smallest index of LiHoReCoCo

• k is 2 for       an = an-1 + 2an-2

• k is 7 for       an+2 + an-1 + 2an-5 = 0

• k is 5 for       an-2 + an-1 + 2an-6 = 0
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For example, a theory of LiHoReCoCo that  follows, is not 
valid for the equations below! It’s of no use whatsoever!!!

an = c1anan−1 + c2an−2,

an = nan−1 + … + ckan−k,

an = c1an−1 + … + ckan−k + 3

an = c1a2
n−1 + … + ckan−k,

an = c1an−1 + … + (n-k)an−k,

an = c1an−1 + sin(an−k)

Nonlinearity

WHY?

Not constant coefficients

Not homogenous

Nonlinearity

Not constant coefficients

Nonlinearity
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Solving LiHoReCoCos
• Basic idea: Look for solutions of the form an = r n, 

where r is a constant.
• Plug r n into LiHoReCoCos and you get the 

characteristic equation:
rn = c1rn−1 + … + ckrn−k,  if we  /*r -n r k

• we get
rk − c1rk−1 − … − ck = 0

• The solutions (characteristic roots) can yield an 
explicit formula for the sequence.

Solving 1-LiHoReCoCos
Consider the 1-LiHoReCoCo:   an = 2an−1, a0 = 2
Start with an = Crn and plug it in here and

we get    rn – 2rn-1 = rn – 2rn/r = 0 /rn

r – 2 = 0 and r = 2
an = C2n now, to get C we use initial conditions, 
and write

a0 = 2 = C20  C = 2, and the solution is
an = 2*2n = 2n+1. Check it by plugging it back here
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Solving 2-LiHoReCoCos
• Consider an arbitrary 2-LiHoReCoCo:

an = c1an−1 + c2an−2

• It has the characteristic equation (C.E.): 
r2 − c1r − c2 = 0

• Theorem 1: If this CE has 2 different roots
r1r2, then

an = Ar1
n + Br2

n for n  0
for some constants A, B.

• Note that A and B are uniquely defined by 
INITIAL CONDITIONS ONLY
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Example
• Solve the recurrence an = an−1 + 2an−2 given the 

initial conditions a0 = 2, a1 = 7.
• Solution: First rewrite recurrence as 

– an - an−1 - 2an−2 = 0 i.e., as   rn – rn-1 - 2 rn-2 = 0 
– Which leads to the characteristic equation: 

r2 − r − 2 = 0
– Solutions:  r = [−(−1)±((−1)2 − 4ꞏ1ꞏ(−2))1/2] / 2ꞏ1

= (1±91/2)/2 =  (1±3)/2, so r1 = 2 and r2 = −1.
– So an = A 2n + B (−1)n.    

What about A and B?  Now initial conditions 
should jump in!!!
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Example Continued…
• To find A and B, solve the equations for the 

initial conditions a0 and a1:
a0 = 2 = A20 + B (−1)0

a1 = 7 = A21 + B (−1)1

• Simplifying, we have the pair of equations:
2 = A + B
7 = 2A − B
which we can solve easily by addition:

9 = 3A;  A = 3;   B = -1.
• Final answer: an = 3ꞏ2n − (−1)n
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Example - Solving Fibonacci 

Remind, recipe solution has 3 basic steps:
1) Assume solution of the form an = r n

2) Find all possible r’s that seem to make 
this work.  Call these r1 and r2.  Modify 
assumed solution to general solution
an = Ar1

n +Br2
n where A,B are constants.

3) Use initial conditions to find A,B and
obtain specific solution.
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Solving Fibonacci 
1) Again, assume exponential solution of the 

form an = r n :
Plug this into an = an-1 + an-2 :

r n = r n-1 + r n-2 

Notice that all three terms have a common r n-2

factor, so divide this out:
r n /r n-2 = (r n-1+r n-2 )/r n-2  r 2 - r - 1=0

This equation is the characteristic equation of 
the Fibonacci recurrence relation.
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Solving Fibonacci 

2) Find all possible r’s that solve characteristic
r 2 = r + 1

Call these r1 and r2.  General solution is 
an = Ar1

n +Br2
n where A, B are constants.

Quadratic formula gives:
r = (1  5)/2

So r1 = (1+5)/2, r2 = (1-5)/2
General solution: 

an = A [(1+5)/2]n +B [(1-5)/2]n
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Solving Fibonacci 
3) Use initial conditions a0 = 0, a1 = 1 to find A,B 

and obtain specific solution.
0=a0 = A [(1+5)/2]0 +B [(1-5)/2]0 = A +B
1=a1 = A [(1+5)/2]1 +B [(1-5)/2]1 =

A(1+5)/2 +B (1-5)/2 =
(A+B )/2 + (A-B )5/2

First equation give B = -A. Plug into 2nd:
1 = 0 +2A5/2  so A = 1/5, B = -1/5
Final answer: nn

na 
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(CHECK IT!)
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Solving Fibonacci 
3) Use initial conditions a1 = 1, a2 = 1 to find A,B 

and obtain specific solution.
1=a1 = A [(1+5)/2]1 +B [(1-5)/2]1 = Aa1 +Ba2
1=a2 = A [(1+5)/2]2 +B [(1-5)/2]2 = Aa1

2 +Ba2
2

A(1+5)/2 +B (1-5)/2 =
(A+B )/2 + (A-B )5/2

First equation give B = -A. Plug into 2nd:
1 = 0 +2A5/2  so A = 1/5, B = -1/5
Final answer: nn

na 
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k-LiHoReCoCos
• Consider a k-LiHoReCoCo:

• It’s C.E. is:

• Theorem 3: If C.E. has k distinct roots ri, then the 
solutions to the recurrence are of the form:

for all n  0, where the Ai are constants to be 
determined from the initial conditions.
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k-LiHoReCoCos
• Example: Consider a 4-LiHoReCoCo:

• It’s C.E. is:

• The roots of C.E. are r1=-1, r2=-2, r3=-3, and r4=-4, 
and the homogeneous solution is

for all n  0, where the Ai are constants depending upon initial 
conditions.

1 2 3 4

1 2 3 4

10 35 50 24
10 35 50 24 0

n n n n n

n n n n n

a a a a a
a a a a a

   

   

    
    

4 3 210 35 50 24 0r r r r    

4

1 2 3 4
1

( 1) ( 2) ( 3) ( 4)n n n n n
n i i

i

a Ar A A A A
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Check the solutions below
Example 6 (k = 3) 

Find the solution of an = 6an1  11an2 + 6an3
with initial conditions a0=2,   a1=5  and   a2=15 .

Sol :
The roots of r3  6r2 + 11r – 6 = 0 are 

r1 = 1, r2 = 2, and r3 = 3
∴an = 1  1n + 2 2n + 3 3n

∵a0 = 1 + 2 + 3 = 2
a1 = 1 + 22 + 3A3 = 5       
a2 = 1 + 42 + 93 = 15

∴ an = 1  2n + 2  3n

1 = 1, 
2 = 1, 
3 = 2
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Homogeneous - Complications
1) Repeating (Degenerate) roots in characteristic 

equation.  Repeating roots imply that they don’t learn 
anything new from second root, so may not have 
enough information to solve formula with given initial 
conditions.  We’ll see how to deal with this on next 
slide.

2) Non-real (complex) numbers roots in 
characteristic equation.  If the sequence has periodic 
behavior, it may get complex roots (for example an = 
-an-2). We won’t worry about this case as long as 
the complex roots don’t repeat (in principle, same 
method works as before, except use complex 
arithmetic).

2) above is a complication only for those who working 
with complex numbers consider a complicated math.
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Let an = c1an1 + c2an2 + … + ckank be a recurrence  
relation with c1, c2, …, ck R. 

Then, the SOLUTION goes as follows
If rk  c1rk1  c2rk2  …  ck = 0 has

t distinct roots       r1, r2,   …, rt
with multiplicities m1, m2, …, mt respectively, 
where mi  1,i, and m1+ m2 +…+ mt = k,

then 1

1

2

2

1
1 0 11 1 1 1

1
2,0 2 1 2 1 2

1
0 1 1

( )

( )

( )t

t

nm
n , , ,m

nm
, ,m

nm
t, t, t,m t

a A A n ... A n r

    A A n ... A n r     

    ... A A n ... A n r










     

      

       

where i,j are constants for 1  i  t and 0  j  mi1 and 
they are to be found by using the k initial conditions.

Complication: Repeating Roots
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Complication: Repeating Roots
EG:  Solve an = 2an-1-an-2 , a0 = 1, a1 = 2
Find characteristic equation by plugging in an = r n:

r 2 - 2r +1 = 0
Since r 2 - 2r +1 = (r -1)2  the root r = 1 repeats. 
If we tried to solve by using general solution 

an = Ar1
n+Br2

n = A1n+B1n = (A+B)1n

which forces an to be a constant function ().
SOLUTION:  Multiply second solution by n so 

general solution looks like:
an = Ar1

n+Bnr1
n
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Complication: Repeating Roots
Solve an = 2an-1-an-2, a0 = 1, a1 = 2
General solution: an = A1n+Bn1n = A+Bn
Plug into initial conditions
1 = a0 = A+Bꞏ0ꞏ10= A
2 = a1 = Aꞏ11+Bꞏ1ꞏ11= A+B
Plugging first equation A = 1 into second:
2 = 1+B implies B = 1.

Final answer: an = 1+n
(CHECK IT!)
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One more example with repeated roots :

What’s the solution of an = 6an1  9an2
with a0 = 1 and a1 = 6 ?

Solution :
The root of r2  6r + 9 = 0 is  r0 = 3. 
Hence an = 1 

．3n + 2  
．n ．3n . 

a0 = 1 = 1 
．30 +  2  

．0 ．30        1 = 1
a1 = 31 + 32 = 6         2  = 1    

 an = 3n + n ．3n
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Example Find the solution to the recurrence relation 
an = 3an1  3an2  an3 with initial conditions
a0 = 1,    a1 = 2 and    a2 = 1.

Sol :
r3 + 3r2 + 3r + 1 = 0 has a single root r0 = 1 of    
multiplicity three.
∴ an = (1+2n+3n2) r0

n = (1+2n+3n2)(1)n

∵ a0 = 1 = 1 
a1 = (1+2+3)  (1) = 2
a2 = 1+22+43 = 1

∴1 = 1, A2 = 3, 3 = 2
 an = (1+3n2n2)  (1)n

And again, one more example with repeated roots :
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LiNoHoReCoCos
• Linear nonhomogeneous RRs with constant 

coefficients may (unlike LiHoReCoCos) contain 
some terms F(n) that depend only on n (and 
not on any ai’s) or F(n) is just a constant.  

• General form:

an = c1an−1 + … + ckan−k + F(n)

an - c1an−1 - … - ckan−k = F(n)
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Solutions of LiNoHoReCoCos
• A useful theorem about LiNoHoReCoCos:

– If p(n) is any particular solution to the 
LiNoHoReCoCo

– Then all its solutions are of the form:

an = p(n) + h(n),

where h(n) is any solution to the associated 
homogeneous RR
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Why is it this way?
• Consider that homogeneous part is given and fixed 

and only changing part is F(n),

• an = 2an-1-an-2 + 3 an-2an-1+an-2 = 3
• an = 2an-1-an-2 + 3n an-2an-1+an-2 = 3n

• an = 2an-1-an-2 + 3n an-2an-1+an-2 = 3n
• an = 2an-1-an-2 + n2 an-2an-1+an-2 = n2

• an = 2an-1-an-2 + sin(n)        an-2an-1+an-2 = sin(n)

• Hence, recurrence relations is described with same 
homogeneous equation and only changing term is 
right hand side, i.e., the homogeneous solution will 
be same and each time we will have a particular
solution corresponding to a particular F(n)
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Solution to the Nonhomogeneous Case
Consider the Tower of Hanoi recurrence 

an = 2an-1+1.
Let’s solve it methodically.  Rewrite:

an - 2an-1 = 1
1) Solve with the RHS set to 0, i.e. solve the 

homogeneous case.
2) Add a particular solution to get general 

solution,  i.e., use rule:
General 

Nonhomogeneous Solution = General 
Homogeneous Solution 

Particular
Nonhomogeneous Solution +
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an - 2an-1 = 1

1) Solve with the RHS set to 0, i.e. solve first
an - 2an-1 = 0

Characteristic equation: r - 2 = 0
so unique root is r = 2.  General solution to 
homogeneous equation is

anH = Aꞏ2n

Solution to the Nonhomogeneous Case
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2) Add a particular solution to get general solution for 
an - 2an-1 = 1.  Use rule:

There are little tricks for guessing particular 
nonhomogeneous solutions.  For example, when 
the RHS is constant, the guess should also be a 
constant.

So guess a particular solution of the form bn=C.
Plug into the original recursion:
1 = bn – 2bn-1 = C – 2C = -C. Therefore C = -1.

General solution: an = Aꞏ2n -1.

General 
Nonhomogeneous = General 

homogeneous 
Particular

Nonhomogeneous+

Solution to the Nonhomogeneous Case
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Finally, use initial conditions (I.Cs.) to get 
closed solution.  In the case of the Towers 
of Hanoi recursion, initial condition is:

a1 = 1
Using general solution  an = Aꞏ2n -1  we get:
1 = a1 = Aꞏ21 -1 = 2A –1.
Therefore, 2 = 2A, so A = 1, and 

the final answer is 
an = 2n -1

Solution to the Nonhomogeneous Case
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Example
• Find all solutions to an = 3an−1+2n.  Which 

solution has a1 = 3?
– Notice this is a 1-LiNoHoReCoCo.  Its 

associated 1-LiHoReCoCo is an = 3an−1, 
whose solutions are all of the form an = A3n.  

– Thus the solutions to the original problem 
are all of the form an = p(n) + A3n.

– So, all we need to do is find one p(n) that 
works.
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Trial Solutions
• If the extra terms F(n) are a degree-t

polynomial in n, you should try a degree-t
polynomial as the particular solution p(n).

• This case: F(n) is linear so try an = cn + d.
• cn+d = 3(c(n−1)+d) + 2n (for all n)

(−2c-2)n + (3c−2d) = 2n + 0 (collect terms)
and, c = −1 ,   d = −3/2.

• So, an = −n − 3/2   is a particular solution.
• Check:  an1 = {−5/2, −7/2, −9/2, … }
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Finding a Desired Solution

• From the previous, we know that all 
general solutions to our example are of 
the form an = anH + anP:
an = A3n − n − 3/2 .
Solve this for A for the given I.C., a1 = 3:
3 = −1 − 3/2 + A31

A = 11/6
The answer is an = (11/6)3n −n − 3/2 
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Example A (terms of the form kn)
an = 3an-1 + 2n , I.C. is  a0 = 2, 

We first proceed to solve the associated homogeneous recurrence relation, 
an - 3an-1 = 0

The characteristic equation gives us r = 3, and therefore
anH = c1(3n)

Now, after the homogeneous part is solved, 
we proceed to solve the non-homogeneous part. 

Using a smart guess, we let
anP = c22n

From here, we then deduce that an-1P = c22n-1. 

PARTICULAR SOLUTIONS – 3 more examples, first 2 are from* :

The general rule that we follow is: 

For any amount of terms with the form kn, we shall let an be kn multiplied by a 
constant. So, if the non-homogeneous part is an = 5n + 78n, then we let the 
answer be an = c15n + c278n, in which c1 and c2 are constants to be found. The 
same goes to the form nkn, in which you let an = c1nkn. However, there is an 
exception, when the root r is of the same form as kn . We, will not go into 
these specifics. It’s for a more specialized course!

*http://furthermathematicst.blogspot.com/2011/06/43-non-homogeneous-linear-recurrence.html
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Putting the last 2 equations back to the initial recurrence relation which is
anP = 3an-1P + 2n, and we have
c22n= 3c22n-1 + 2n

(c2 – 1)2n= 3c22n-1   here we multiply both sides by 2 / 2n and we obtain           
2(c2 – 1)= 3c2
2c2 – 2 = 3c2
and, we have c2 = –2, 
which then gives us anP = –2(2n) = –2n+1. 

Now, the GENERAL SOLUTIONS IS THE SUM of homogeneous and non-
homogeneous i.e., particular part, and we have 
an = c1(3n) – 2n+1

Only now we apply initial condition(s) I.C, to find c1. Say, I.C. is  a0 = 2, 
2 = c130 – 20+1 or    c1 = 4
So, our FINAL GENERAL SOLUTIONS FOR A GIVEN I.C. is

an = 4(3n) – 2n+1
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Example B (nonhomogeneous part are polynomial terms, an2 + bn + c)
an = 3an-1 + n2 + 5n + 3,         I.C. is a1 = 0.
(Note that homogeneous solution is same as in Example A, and so is the anH)
anH = c1(3n). But, for the non-homogeneous i.e., particular, solution, we assume
anP = c2n2 + c3n + c4 (1)
an-1P = c2(n – 1)2 + c3(n – 1) + c4 (2)
You may have got the pattern by now. Note that if the original equation was

anP = 3an-1 + n2 + 3, or
anP = 3an-1 + n2 + 5n, or
anP = 3an-1 + n2

we still need to use the above, an = c2n2 + c3n + c4. 
This is because we need to account for the possibly missing terms which might 
arise in the particular solution.
Now, same as earlier, we plug in (1) and (2) into original equation
c2n2 + c3n + c4 - 3(c2(n – 1)2 + c3(n – 1) + c4) = n2 + 5n + 3
-2c2n2 + (6c2-2c3)n - 3c2 + 3c3 - 2c4 = 1n2 + 5n + 3
and constants are, c2 = -1/2, c3 = -4 and c4 = -27/4
an = anH + anP = c1(3n) – 1/2n2 - 4n - 27/4 . By using I.C.. 0 = 3c1 - 1/2 - 4 - 27/4 and

an = (11.25/3)(3n) – 1/2n2 - 4n - 27/4 = 11.25(3n-1) – 1/2n2 - 4n - 27/4
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Example C: Repeating Roots + F(n)
Solve an = 2an-1-an-2 + 2n, I.Cs. a1 = 1, a2 = 2
Homogeneous solution (see p. 36): 

anH = A1n+Bn1n = A+Bn
However, having F(n) we first need to find particular solution and only then 

to use I.Cs. to find constants.     
Assume anP = C2n,   and if so,      an-1P=C2(n-1) &      an-2P=C2(n-2). 
Plug them into original recurrence equation above
C2n-2C2(n-1)+C2(n-2) = 1*2n

(C-2C/2+C/4)*2n = 1*2n and C=4.
an = A+Bn +4*2n. Now only one uses I.Cs. to find A and B
1 = A+B+4*2    and   2 = A+2B +4*4,
A=0, B=-7
an = -7n +4*2n       =>     an = -7n + 2n+2

Checking: -7n + 2n+2 -2(-7n-7 + 2n+1)-7n-14 + 2n = 2n

-7n + 2n+2 + 14n + 14 - 2n+2 - 7n - 14 + 2n = 2n

2n = 2n Solution is correct

The Nature of Recurrences’ Solutions 1
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The solutions of LiHOReCoCo with distinc roots is always of this type:

And so, the behavior of an depends upon whether ALL ROOTS are within the unit circle 
or not. If former the series converges, if later the sequence diverges

1

k
n

n i i
i

a Ar


 

Re x

j Im x

Re x

j Im x

Sequences 
CONVERGE

Sequences 
DIVERGE

How each component of the homogeneous solution of an recurrence (sequence) 
behaves is determined by the recurrence’s Ch.Eq. root location as shown below:
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Review

• Recurrence relation
• Solving recurrences

– k-LiHoReCoCos
– LiNoHoReCoCos


